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Abstract
We study the zero-bandwidth limit of the two-impurity Anderson model in an antiferromagnetic
(AF) metal. We calculate, for different values of the model parameters, the lowest excitation
energy, the magnetic correlation 〈S1S2〉 between the impurities and the magnetic moment at
each impurity site as a function of the distance between the impurities and the temperature. At
zero temperature, in the region of parameters corresponding to the Kondo regime of the
impurities, we observe an interesting competition between the AF gap and the Kondo physics of
the two impurities. When the impurities are close enough, the AF splitting governs the physics
of the system and the local moments of the impurities are frozen, in a state with a very strong
ferromagnetic correlation between the impurities and roughly independent of the distance. In
contrast, when the impurities are sufficiently far apart and the AF gap is not too large, the
scenario of the Kondo physics takes place: non-magnetic ground state and the possibility of
spin-flip excitation emerges and the ferromagnetic 〈S1S2〉 decreases as the distance increases,
but the complete decoupling of the impurities never occurs. In addition, the presence of the AF
gap gives a non-zero magnetic moment at each impurity site, showing a non-complete Kondo
screening of the impurities in the system. We observe that the residual magnetic moment
decreases when the distance between the impurities is increased.

1. Introduction

The behavior of spin correlations in heavy fermion systems
is still not completely understood [1]. At high temperatures,
heavy fermion materials behave like a collection of individual
local moments. When the temperature goes down, correlations
take place and the Kondo effect [2] can occur in this
system. This screening can quench the magnetic interaction
between local moments and the question is: how can spin
polarizations propagate to other local moments? A first
approach towards an understanding of this very interesting
problem, the competition between the Kondo effect and
the Ruderman–Kittel–Kasuya–Yosida interaction (RKKY) [3]
has been studied in the simplified framework of the two-
impurity Anderson [4] or Kondo [5] models. Recently, in
the Kondo limit, a systematic study of the ground states of
two Anderson impurities has been realized [6]. Both models
take into account the conduction electrons in a non-magnetic
band. Nevertheless, many experiments in heavy fermion
systems show antiferromagnetic correlations or orderings at
low temperatures. For example, inelastic neutron scattering

from the antiferromagnetic heavy fermion system U2Zn17 [7]
shows spin fluctuations in this material. Also, UPt3 [8] and
URu2Si2 [9] are both heavy fermion compounds where spin
fluctuations and antiferromagnetic correlations are present.
This suggests that, to understand the anomalous properties
of these materials, it is necessary to study also the Kondo
effect in the presence of different kinds of magnetic order
of itinerant electrons. Zhang and Yu [10] considered a half-
filled anisotropic Kondo lattice model within a mean field
theory and found a coexistence of antiferromagnetic long-
range order and the Kondo singlet state. Similar results
are obtained by Capponi and Assaad [11] using a Quantum
Monte Carlo algorithm. Recently, the single Kondo effect
in an antiferromagnetic metal was studied [12]. This work
shows that, for a general location of the impurity, the Kondo
singularities still occur, but the ground state has a partially
unscreened moment. From the theoretical point of view, a
natural extension of this problem is to consider the case of
two magnetic impurities in an antiferromagnetic metal. The
study of a pair of spin-1/2 impurities is a starting point for
our understanding of a lattice behavior in this kind of material.
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The aim of this work is to present a very simple approach
to study how the competition between partial quenching of
the individual moments and their indirect interaction via the
antiferromagnetic conduction electrons take place. To this
end, as a first approach to the solution of this problem, we
extend the zero-bandwidth (ZBW) limit approximation of the
two-impurity Anderson model in a paramagnetic metal [13]
to include the AF conduction band [12]. Despite our simple
approximation, the ZBW limit has been successfully applied
to explain qualitatively most of the experimental results in
valence fluctuating problems [14]. This limit also gives a
good description of the magnetic reentrance phenomena in
superconductors with Kondo impurities [15]. Also this method
was applied to explain transport experiments on semiconductor
quantum dots [16]. An attractive feature of the ZBW limit, is
that all calculations can be realized exactly with a minimum of
numerical effort and the results are very satisfying, since they
reproduce results for properties found much more laboriously
by other techniques. For example, the most important results
of our previous paper [13] were obtained in [6] by means
of variational wavefunctions. Nevertheless, it is important to
recognize that the ZBW limit is oversimplified, specifically
in not containing any band structures, and consequently
we must expect to obtain a cartoon of the real picture.
In summary, motivated by the experimental results in the
magnetic heavy fermion systems as mentioned above and by
the previous successful theoretical work and following this
train of thought, we employ the ZBW limit to study this
very interesting problem. In the absence of more elaborate
theoretical solutions, this approach often gives results in good
qualitative agreement with experimental data.

We introduce the two-impurity Anderson Hamiltonian and
set up the zero-bandwidth approximation to this problem in
section 2. Section 3 is devoted to presenting the numerical
results and discussing their physical implications. Section 4 is
devoted to conclusions.

2. Model

We start from the two-impurity Anderson Hamiltonian [17] in
the absence of direct hopping between impurities extended to
include the antiferromagnetism of the itinerant electrons:

H =
∑

k,σ

ε(k)c
†
kσ ckσ +

∑

k

[�(c†
k↑ck+Q↑ − c†

k↓ck+Q↓) + H.c.]

+ εd

∑

σ, j=1,2

d†
jσd jσ + U

∑

j=1,2

d†
j↑d j↑d†

j↓d j↓

+
∑

k,σ, j=1,2

Vkj(c
†
kσ d jσ + H.c.), (1)

where c†
kσ (ckσ ) creates (destroys) an electron with momentum

k and spin σ in the conduction band with energy ε(k), and
d†

jσ (d jσ ) creates (destroys) a localized electron with spin σ

on the site R j with energy εd . Besides, � is the AF gap, Q
is the ordering wavevector, U is the localized-orbital Coulomb
interaction and Vkj = V eik·R j , where V is the hybridization
strength. For � = 0, H reduces to the well-known two-
impurity Anderson model [17]. From the practical point
of view, the ZBW approximation replaces the structureless

conduction bands by a few states, located just at the Fermi
energy (εF); conceptually, this recognizes the fact that in most
experiments essentially only levels close to the Fermi energy
are relevant. As in the previous paper [13], we take here two
different vectors k (k1 and k2 with k1 �= k2 and |k1| = |k2| =
|kF|, with kF the Fermi momentum) as a minimal model to
compensate for the two localized spins at the impurity sites.
The model should lead to two independent Anderson problems
when the impurities are sufficiently far apart and � = 0.
Accordingly, the original Hamiltonian of equation (1) reduces
to

HZBW = εF

∑

σ

(c†
k1σ

ck1σ + c†
k2σ

ck2σ )

+ �[(c†
k1↑ck2↑ − c†

k1↓ck2↓) + H.c.]
+ εd

∑

σ, j=1,2

d†
jσd jσ + U

∑

j=1,2

d†
j↑d j↑d†

j↓d j↓

+ V
∑

σ

(eiφ1 c†
k1σ

d1σ + eiφ ′
1 c†

k2σ
d1σ

+ eiφ ′
2 c†

k1σ
d2σ + eiφ2 c†

k2σ
d2σ + H.c.), (2)

with k1 = |k1| = |kF|, k2 = |k2| = |k1 + Q| = |kF|,
φ1 = k1 ·R1 = k1 · (R2 + r), φ′

1 = k2 ·R1, φ′
2 = k1 ·R2, and

φ2 = k2 ·R2 = k2 ·(R1 −r), where r = R1 −R2 is the distance
between impurities. We can rewrite equation (2) in terms of r.
To this end we define c†

1σ = eiφ ′
2c†

k1σ
and c†

2σ = eiφ ′
1c†

k2σ
:

HZBW = εF

∑

σ

(c†
1σ c1σ + c†

2σ c2σ )

+ �[e−i(k1·R2−k2·R1)(c†
1↑c2↑ − c†

1↓c2↓) + H.c.]
+ εd

∑

σ, j=1,2

d†
jσd jσ + U

∑

j=1,2

d†
j↑d j↑d†

j↓d j↓

+ V
∑

σ

(eik1·rc†
1σ d1σ + c†

2σ d1σ

+ c†
1σ d2σ + e−ik2·rc†

2σ d2σ + H.c.). (3)

To solve the model Hamiltonian with a minimal number of
parameters we take R1 = r/2 and R2 = −r/2 and we define
φ = k1 · r and φ′ = Q · r. Then, we rewrite equation (3) as

HZBW = εF

∑

σ

(c†
1σ c1σ + c†

2σ c2σ )

+ �[ei(φ+φ ′/2)(c†
1↑c2↑ − c†

1↓c2↓) + H.c.]
+ εd

∑

σ, j=1,2

d†
jσd jσ + U

∑

j=1,2

d†
j↑d j↑d†

j↓d j↓

+ V
∑

σ

(eiφc†
1σ d1σ + c†

2σ d1σ

+ c†
1σ d2σ + e−i(φ+φ ′)c†

2σ d2σ + H.c.), (4)

where we use k2 · r = (k1 + Q) · r = (φ + φ′) and
k1 ·R2 − k2 ·R1 = −[k1 ·r + (k1 + Q) ·r]/2 = −(φ + φ′/2).
For r → 0, φ → 0 and φ′ → 0, we can write the model
Hamiltonian as HZBW = H0 + H1, with

H0 =
∑

σ

(εF + Sσ �)α
†
1σ α1σ + εd

∑

σ, j=1,2

d†
jσ d jσ

+ U
∑

j=1,2

d†
j↑d j↑d†

j↓d j↓

+ √
2V

∑

σ

(α
†
1σ d1σ + α

†
1σ d2σ + H.c.) (5)
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and
H1 =

∑

σ

(εF − Sσ �)α
†
2σ α2σ , (6)

where we define Sσ = +(−) for the spin σ = ↑ (↓), α
†
1σ =

(c†
1σ + c†

2σ )/
√

2 and α
†
2σ = (c†

1σ − c†
2σ )/

√
2. This is the limit

for the case in which the impurities are close together and we
see that the hybridization with the conduction band electrons
reduces to only one orbital (α1σ ) and favors the ferromagnetic
coupling between the impurities. So the HZBW reduces to an
effective simplified zero-bandwidth Hamiltonian (H0) plus a
diagonal term (H1) disconnected from it. As a consequence,
the mathematical problem reduces to solving H0. For φ �= 0
and φ′ = ±π,±3π, . . . ,±(2n + 1)π the hybridization term
reduces to the case in which two orthogonal band states are
coupled each to a different impurity (i.e. V

∑
σ [(eiφc†

1σ +
c†

2σ )d1σ + (c†
1σ − e−iφc†

2σ )d2σ + H.c.] = √
2V

∑
σ [γ †

1σ d1σ +
γ

†
2σ d2σ + H.c.], where γ

†
1σ = (eiφc†

1σ + c†
2σ )/

√
2 and γ

†
2σ =

(c†
1σ − e−iφc†

2σ )/
√

2). For � = 0, this is the limit of
the model when the impurities are sufficiently far apart and
the ZBW Hamiltonian reduces to two independent Anderson
problems. For � �= 0 and φ′ = ±π the antiferromagnetic
term reduces to �[ei(φ+φ ′/2)(c†

1↑c2↑ − c†
1↓c2↓) + H.c.] =

�[∓ie−iφ(γ
†
1↑γ2↑ − γ

†
1↓γ2↓) + H.c.]. Therefore, for any value

of φ, we can see that the impurities are always correlated
due to the antiferromagnetic order of the itinerant electrons.
To study the interplay between the hybridization and the
antiferromagnetic order in this simple theoretical picture we
take hereafter the ordering wavevector Q = −2k1 (φ′ = −2φ):
no different physical results are obtained with other values. So
equation (4) reduces to

HZBW = εF

∑

σ

(c†
1σ c1σ + c†

2σ c2σ )

+ �[(c†
1↑c2↑ − c†

1↓c2↓) + H.c.]
+ εd

∑

σ, j=1,2

d†
jσd jσ + U

∑

j=1,2

d†
j↑d j↑d†

j↓d j↓

+ V
∑

σ

(eiφc†
1σ d1σ + c†

2σ d1σ

+ c†
1σ d2σ + eiφc†

2σ d2σ + H.c.). (7)

For φ = 0 equation (7) gives HZBW = H0 + H1. For φ = π/2
we have γ

†
1σ = (ic†

1σ+c†
2σ )/

√
2 and γ

†
2σ = (c†

1σ+ic†
2σ )/

√
2 and

we can rewrite HZBW in terms of two independent Anderson
Hamiltonians plus a coupling term: HZBW = HA1 + HA2 +
�[(γ †

1↑γ2↑ − γ
†
1↓γ2↓) + H.c.], where we define

HA j = εF

∑

σ

γ
†
jσγ jσ + εd

∑

σ

d†
jσ d jσ + Ud†

j↑d j↑d†
j↓d j↓

+ √
2V

∑

σ

(γ
†
jσ d jσ + H.c.). (8)

3. Results and discussion

The magnetic correlations between the impurities given by
the model Hamiltonian (equation (7)) can be obtained from
the four-particle states (this is the most relevant Hilbert space
in relation to the two Anderson problems discussed here) or
from the grand canonical ensemble adjusting the chemical

potential in such a way that the mean total number of particles
is always four. There is little numerical difference between
these alternative calculations [14]. So that, in all the numerical
results presented below, we use the four-particle states (N =
4). For this case, the full Hamiltonian matrix is 70 × 70.
Nevertheless, the solution of the problem reduces to the
diagonalization of two 16 × 16 matrices (for Sz = ±1) and
a 36 × 36 matrix (for Sz = 0) as the full Hilbert space is
block diagonalized, with each block corresponding to a given
Sz component. For Sz = ±2, the model gives two degenerate
eigenvalues (λ2 = 2(εF + εd)). To obtain the numerical
results we take the Fermi energy εF = 0 and V as the unit
of energy. Therefore, the model is completely characterized by
εd , U , � and the parameter φ as a measure of the distance
between the impurities. We start by presenting in figure 1
the energy difference of the two lowest energy levels EK =
(λSz=+1 − λSz=0) as a function of φ, for εd/V = −5, five
different values of �/V = 0, 0.2, 0.5, 1 and 2, and three
different values of U/V = 30, 10 and 5 (figures 1(a)–(c),
respectively), ranging from the Kondo limit (U � |εd −εF|) to
the intermediate valence (IV) regime (U ∼ |εd − εF|). We can
see that EK always decreases when φ decreases and also EK

decreases when � is increases. In the Kondo limit (figures 1(a)
and (b)), for any value �/V �= 0, EK < 0 for φ = 0 and
EK > 0 for φ = π/2. Therefore, for � �= 0, there is a
particular value φ = φc, with 0 < φc < π/2, where EK = 0.
For φ < φc the ground state properties correspond to Sz = +1
state (if � < 0, Sz = −1) and for φ > φc the Sz = 0 ground
state properties take place. In the IV regime (figure 1(c)), for a
given value of U/|εd − εF|, the existence or not of φc depends
on the value of �/V . When U/V reduces, large values of �/V
are needed to obtain the Sz = +1 ground state at φ = 0.

To analyze these results, we consider first the limit of
φ = π/2, where we have the Hamiltonian HZBW = HA1 +
HA2 + �[(γ †

1↑γ2↑ − γ
†
1↓γ2↓) + H.c.]. For any value of �, the

solution gives the Sz = 0 ground state. Therefore, in this limit
we have always EK > 0 (see figure 1). It is easy to show
this fact in the Kondo limit of each impurity (U/|
| → ∞,
V/|
| � 1, with 
 = (εd − εF)/2). In this limit, the 36 × 36
matrix can be simplified to obtain, approximately, the ground
state energy of HZBW and the corresponding eigenvector (a1, a2

and a3) from the lowest eigenvalue λ4,0 of the 3 × 3 matrix
given by

∣∣∣∣∣

2εd + 2J � 0
� 2εd + J/2 −√

3�

0 −√
3� 2εd

∣∣∣∣∣ , (9)

with J = −2V 2/|
|. In this case the ground state is
(|N, Sz 〉φ): |4, 0〉π/2 = ∑

i ai |gi〉, where we define |g1〉 =
1
2 [−γ

†
1↑γ

†
2↑|−〉 − γ

†
1↓γ

†
2↓|+〉 + 1√

2
(γ

†
1↑γ

†
2↓ + γ

†
1↓γ

†
2↑)|�〉 −

1√
2
(γ

†
1↑γ

†
2↓ − γ

†
1↓γ

†
2↑)|�〉], |g2〉 = 1√

2
(γ

†
2↑γ

†
2↓ − γ

†
1↑γ

†
1↓)|�〉,

and |g3〉 = (−1)

2
√

3
[γ †

1↑γ
†
2↑|−〉 + γ

†
1↓γ

†
2↓|+〉 + 3 1√

2
(γ

†
1↑γ

†
2↓ +

γ
†
1↓γ

†
2↑)|�〉+ 1√

2
(γ

†
1↑γ

†
2↓−γ

†
1↓γ

†
2↑)|�〉], with |+〉 = d†

1↑d†
2↑|0〉,

|−〉 = d†
1↓d†

2↓|0〉, |�〉 = 1√
2
(d†

1↑d†
2↓ + d†

1↓d†
2↑)|0〉, and

|�〉 = 1√
2
(d†

1↑d†
2↓ − d†

1↓d†
2↑)|0〉. Note that |g1〉 is the product

of the two Kondo (one for each impurity) singlet states:

3
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Figure 1. The energy difference EK = (λSz=+1 − λSz=0) as a function of φ, for εd/V = −5, five different values of �/V = 0, 0.2, 0.5, 1 and
2, and three different values of U/V = 30 (a), 10 (b) and 5 (c).

1√
2
(γ

†
1↑d†

1↓ − γ
†
1↓d†

1↑) × 1√
2
(γ

†
2↑d†

2↓ − γ
†
2↓d†

2↑)|0〉. The explicit
form of |4, 0〉π/2 shows clearly the important contribution of
the ferromagnetic correlations between the impurities in the
ground state. Solving the cubic equation we obtain the ground
state energy. We can write, approximately, two limiting cases:
λ4,0 � 2εd − 2� + J

2 − 3
16

J 2

�
for � � |J | and λ4,0 �

2εd + 2J − 2
3

�2

|J | for |J | � �. In a similar manner, the
simplification of the 16 × 16 matrices (for Sz = ±1) in the
Kondo limit allows us to obtain the first excited energy level
from the 3 × 3 matrix given by

∣∣∣∣∣

2εd + J
√

2� 0√
2� 2εd + J/2

√
2�

0
√

2� 2εd

∣∣∣∣∣ . (10)

The lowest eigenvalue gives λ4,1 = 2εd + J
2 −

√
( J

2 )2 + 4�2.
Therefore, for � > 0 and φ = π/2 we obtain, approximately,
EK � J 2

8�
for � � |J | and EK � −J − 10

3
�2

|J | for |J | � �.

For � = 0 (solid lines in figures 1(a) and (b)), the problem
reduces to solve the one impurity problem (HA j ) and we have
obtained [13] EK = 
 + R0, with R0 = √


2 + 4V 2.
In the opposite limit, for φ = 0, the model gives HZBW =

H0 + H1 and we find that two different ground states are
possible:

(A) For large Coulomb repulsion (|εd − εF| � U ), the
three-particle states and Sz = +1/2 (for � > 0) gives the
ground state energy of H0 and the corresponding eigenvector
(b1, b2, b3, b4 and b5) can be obtained easily from the lowest
eigenvalue λ3,+1/2 of the 5 × 5 matrix given by

∣∣∣∣∣∣∣∣∣

ε1 − � 0 2V 0 −2V
0 ε1 + � −√

2V 0
√

2V
2V −√

2V ε2 −√
2V 0

0 0 −√
2V ε3 + �

√
2V

−2V
√

2V 0
√

2V ε4

∣∣∣∣∣∣∣∣∣

, (11)

where ε1 = 2εd + εF, ε2 = εd + 2εF, ε3 = 2εd + εF + U and
ε4 = 3εd + U . So that the ground state of H0 can be written

4
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Figure 2. Zero-temperature magnetic correlation 〈S1S2〉 as a function of φ for εd/V = −5 and three different values of U/V = 30 (a), 10 (b)
and 5 (c). In (a) and (b)we take �/V = 0, 0.2, 0.5, 1 and 2. For (c) we use �/V = 0, 0.2, 0.5, 0.6 and 1.

as: |3,+1/2〉0 = ∑
i bi |hi〉, where we define |h1〉 = α

†
1↓|+〉,

|h2〉 = α
†
1↑|�〉, |h3〉 = 1√

2
α

†
1↑α

†
1↓(d†

1↑ − d†
2↑)|0〉, |h4〉 =

1√
2
α

†
1↑(d†

1↑d†
1↓ − d†

2↑d†
2↓)|0〉 and |h5〉 = 1√

2
(d†

1↑d†
1↓d†

2↑ −
d†

1↑d†
2↑d†

2↓)|0〉. In a similar manner, we obtain the first excited

state as |3,−1/2〉0 = ∑
i b′

i |h′i〉, where |h′1〉 = α
†
1↑|−〉,

|h′2〉 = α
†
1↓|�〉, |h′3〉 = 1√

2
α

†
1↑α

†
1↓(d†

1↓ − d†
2↓)|0〉, |h′4〉 =

1√
2
α

†
1↓(d†

1↑d†
1↓ − d†

2↑d†
2↓)|0〉, and |h′5〉 = 1√

2
(d†

1↑d†
1↓d†

2↓ −
d†

1↓d†
2↑d†

2↓)|0〉, with the corresponding eigenvalue λ3,−1/2,
obtained from the previous matrix, changing � by −�. From
these two states, we obtain the four-particle states for HZBW

by adding one electron in the decoupled α2↑ state (the ground
state of H1) and we have α

†
2↑|3,+1/2〉0 with Sz = +1 and the

corresponding ground state energy λSz=+1 = εF − � + λ3,+1/2.
The first excited state corresponding to Sz = 0 is given by
α

†
2↑|3,−1/2〉0 with λSz=0 = εF − � + λ3,−1/2. Therefore,

the lowest energy difference gives EK = λSz=+1 − λSz=0 =
λ3,+1/2 − λ3,−1/2 < 0, and we cannot identify this energy

with a Kondo excitation because in the process there is no
spin-flip excitation (α2↓ is absent in both states). For � = 0,
the model Hamiltonian gives λ3,+1/2 = λ3,−1/2 = λ3. For
very large Coulomb repulsion (U/|
| → ∞), equation (11)
reduces to a 3 × 3 matrix and we can solve it to obtain λ3 =
3(εF+εd)/2−R, with R = √


2 + 6V 2 and the corresponding
eigenvector (b1, b2 and b3) gives: b1 = − 1√

3

√
1 − 
/R,

b2 = 1√
6

√
1 − 
/R and b3 = 1√

2

√
1 + 
/R. For small

values of � (� � V and εF = 0), we can write from
equation (11), λ3,+1/2 � 3
 − R − �V 2/(R2 + R
) and
λ3,−1/2 � 3
 − R + �V 2/(R2 + R
). So that EK =
−2�V 2/(R2 + R
). For V � � and � � |εd |, we
can write λ3,+1/2 � 2εd − � − 4V 2/(� − εd), λ3,−1/2 �
2εd −�−2V 2/(�−εd), and therefore EK = −2V 2/(�−εd).
From the above considerations, for � �= 0 and large values
of U , we can see that Ek < 0 for φ = 0 and Ek > 0 for
φ = π/2. Therefore, there is always a particular value φ = φc,
with 0 < φc < π/2, where Ek = 0.

5



J. Phys.: Condens. Matter 20 (2008) 445204 R Allub

(B) For small Coulomb repulsion, in the IV regime (U �
|εd − εF|) and small values of �/V (see figure 1(c)), we can
see that the ground state corresponds to Sz = 0 (Ek > 0). We
can obtain this state solving H0 in the four-particle subspace
with Sz = 0. So we obtain the ground state energy of HZBW

and the corresponding eigenvector (c1, c2, c3, c4 and c5) from
the lowest eigenvalue λ′

4,0 of the 5 × 5 matrix given by
∣∣∣∣∣∣∣∣∣∣

ε′
1 −2V 2V 0 0

−2V ε′
2 − � 0 −√

2V
√

2V
2V 0 ε′

2 + �
√

2V −√
2V

0 −√
2V

√
2V ε′

3 0
0

√
2V −√

2V 0 ε′
4

∣∣∣∣∣∣∣∣∣∣

, (12)

with ε′
1 = 2(2εd +U), ε′

2 = 3εd +U +εF, ε′
3 = 2εd +U +2εF

and ε′
4 = 2εd + 2εF. The ground state is: |4, 0〉0 =∑

i ci | f i〉, where we define: | f 1〉 = d†
1↑d†

1↓d†
2↑d†

2↓|0〉, | f 2〉 =
1√
2
α

†
1↓(d†

1↑d†
2↑d†

2↓+d†
2↑d†

1↑d†
1↓)|0〉, | f 3〉 = 1√

2
α

†
1↑(d†

1↓d†
2↑d†

2↓+
d†

2↓d†
1↑d†

1↓)|0〉, | f 4〉 = 1√
2
α

†
1↑α

†
1↓(d†

1↑d†
1↓ + d†

2↑d†
2↓)|0〉, and

| f 5〉 = 1√
2
α

†
1↑α

†
1↓(d†

1↑d†
2↓ − d†

1↓d†
2↑)|0〉. The last term shows

the antiferromagnetic state |�〉 for the impurities in this ground
state. When this limit take place, we can see (figure 1(c)) that
Ek > 0 and the fundamental state always has Sz = 0 for any
value of φ.

In figure 2 we show the zero-temperature magnetic
correlations 〈S1S2〉 between the impurities (S1 and S2 are the
spin 1

2 operator impurities) as a function of φ, for the same
parameters of figure 1.

For φ → 0 and large Coulomb repulsion (|εd − εF| <

U ) we always observe ferromagnetic correlations between
the impurities (figures 2(a) and (b)). For φ = 0, we have
the ground state α

†
2↑|3,+1/2〉0 and we can write 〈S1S2〉 =

0.25(b2
1 + b2

2). When � is increased, we can see that |b1|
increases (see equations (11)) given more influence of the
ferromagnetic state (|h1〉 = α

†
1↓|+〉) for the impurities in

the ground state. As a consequence, we can see that the
ferromagnetic correlation increases with � for φ = 0 at zero
temperature. For U/|
| → ∞ and � = 0, this ferromagnetic
correlation reduces to (1 − 
/R)/8. When φ increases up to
φc we can observe a ‘jump’ or discontinuity in 〈S1S2〉 showing
the transition from the Sz = +1 ground state to Sz = 0. For
φ = π/2, the magnetic correlation take the minimum value.
This value, in the Kondo limit of each impurity (U/|
| → ∞,
V/|
| � 1), gives 〈S1S2〉 = 0.25(a2

2 + 2
3 a2

3 − 2√
3
a1a3). For

� = 0, a2 = a3 = 0 and 〈S1S2〉 = 0. In figure 2(c) we show
the IV regime (U � |εd − εF|). For large values of �/V , we
have the Sz = +1 ground state at φ = 0 and we can see that
〈S1S2〉 has the same behavior observed in figures 2(a) and (b).
For small values of �/V , the Sz = 0 ground state takes place
and using |4, 0〉0 we can write 〈S1S2〉 = −3

4 c2
5. So we have

always antiferromagnetic correlation between the impurities.
Finally, for intermediate values of �/V (0.6), we observe the
transition from ferromagnetic to antiferromagnetic correlation
at φ = φc. In figure 1(c), for �/V = 0.6 and φ = 0, we can
see that a very small value of |EK| occurs. Due to this fact, the
transition can take place only at small values of φc.

For � = 0 (solid lines in figures 1 and 2),
the antiferromagnetic coupling between itinerant electrons

Figure 3. The magnitude of the magnetic moment at each impurity
site |mi | as a function of φ, for εd/V = −5, �/V = 0.5 and four
different values of U/V = 106: 30, 10 and 6.

disappears and the model Hamiltonian is spin conserving.
Therefore, the first triplet excited state has the lower eigenvalue
λSz=1 (three times degenerate Sz = ±1, 0) and we can see
that EK gives the low energy spin excitation in this model
(Kondo energy). This energy decreases continuously from
the maximum value at φ = π/2, where two independent
(HA j) Anderson models take place, to zero for φ = 0,
with the impurities in the limit of the very strong interaction
regime, where the states |3,±1/2〉 play the role of an effective
localized spin 1/2 which coupled to the band states α

†
2σ to

produce the physics that governs the ground state of the
Kondo model. Therefore, when the distance between the
impurities decreases, the interaction between the impurities
via the conduction electrons increases and reduces the EK

energy. Furthermore, in accordance to the Kondo physics,
the magnetic moment at each impurity site j , given by:
m j = ∑

σ,σ ′ 〈d†
jσ Sσ,σ ′ d jσ ′ 〉, where Sσ,σ ′ are the standard Pauli

matrices, always gives zero for any value of φ. In contrast, for
� �= 0, the model Hamiltonian is spin non-conserving and we
obtain m j �= 0. We show in figure 3, for |εd − εF| < U , the
magnitude of the magnetic moment |m j | as a function of φ.

The figure shows the region for φ < φc, where we observe
a very weak dependence on φ for the corresponding magnetic
moment at φ = 0, where we can write |m j | = 0.25 × (2b2

1 +
b2

3+b2
5). For φc = φ, we observe the discontinuity showing the

transition from Sz = +1 ground state to Sz = 0 and, finally,
for φc < φ we can see that |m j | decreases and reduces to
zero at φ = π/2 (see |4, 0〉π/2). For U/V = 6, far from the
strong Kondo limit, we can observe an important reduction of
the magnetic moment.

In figure 4, we show the magnetic correlations 〈S1S2〉 as
a function of φ, for εd/V = −5, �/V = 0.5 and different
values of temperature (T ). For U/V = 10, in the Kondo
region, figure 4(a) shows different behavior depending on the
value of φ related to φc. For small values (φ < φc � 0.61) and
very low temperatures, results show very strong ferromagnetic

6
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Figure 4. Zero-temperature magnetic correlation 〈S1S2〉 as a function of φ, for εd/V = −5, �/V = 0.5 and different values of temperature.
In (a) we show the case of U/V = 10 and (b) shows U/V = 5.

correlation due to the ground state α
†
2↑|3,+1/2〉0. Therefore,

as the temperature increases, the contribution of the low
energy levels reduces the magnetic correlation. In contrast,
for φ > φc, it is interesting to note that, at low temperatures,
thermodynamical excitations to the low excited states give
additional contributions to the ferromagnetic correlation. This
is an expected result in a Kondo energy level scheme (singlet–
triplet structure). Therefore, we consider that φc as the lowest
limit of φ below which the breakdown of Kondo theory
occurs. Finally, for φ → π/2, the splitting of the low energy
levels decreases, so that correlation decreases with increasing
temperature.

For U/V = 5, in the IV regime, figure 4(b) shows the
antiferromagnetic correlation between the impurities. We can
see that 〈S1S2〉 increases when T increases. In figure 5, we
show the temperature dependence of 〈S1S2〉 for U/V = 10,
εd/V = −5, �/V = 0.5 and different values of φ, around
φc = 0.61.

At low temperatures, for φ � φc the curves show a
maximum. This maximum is due to excitation from the Sz =
0 ground state to the low excited states Sz = +1, 0,−1.
When φ is increased from φc, the maximum becomes more
significant and, according to the above discussion in figure 4,
we consider that the temperature at the maximum gives a rough
measure of the Kondo temperature in this model. The curves
also show how the maximum moves to low temperatures (the
Kondo temperature goes down) when φ (the distance between
impurities) is decreased. For φ < φc, the maximum disappears
and the Kondo regime is impossible.

4. Conclusions

We have extended the zero-bandwidth limit of the two-
impurity Anderson model to include the effect of an
antiferromagnetic gap in the conduction band states. We have
studied, as a function of φ = kF · r, the lowest excitation
energy, the magnetic moment at each impurity site and the

Figure 5. The magnetic correlations 〈S1S2〉 as a function of
temperature, for εd/V = −5, U/V = 10, �/V = 0.5 and different
values of φ around φc = 0.61.

magnetic correlation between the impurities in this model.
In the region of the parameters where the impurities are in
the Kondo regime, as a function of φ, we have shown that
a very interesting competition between the AF gap and the
Kondo physics of the two impurities takes place. At zero
temperature, when the impurities are close enough (φ < φc),
the AF splitting governs the physics of the system and the
local moments of the impurities are frozen in a state with
very strong ferromagnetic correlation between the impurities,
roughly independent of the distance. In contrast, when the
impurities are sufficiently far apart (φ > φc) and the AF gap
is not too large, the scenario of Kondo physics takes place:
a non-magnetic ground state with the possibility of spin-flip
excitation can occur. Here, the ferromagnetic 〈S1S2〉 decreases
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when φ is increased from φc, but the complete decoupling
of the impurities never occurs. In addition, the presence of
the AF gap gives a non-zero magnetic moment m j at each
impurity site, showing a non-complete Kondo screening of
the impurities. Also, we can see that the residual magnetic
moment decreases when φ is increased. Finally, the zero-
bandwidth limit approach used here gives a new contribution
to understand the very relevant and difficult problem of two-
magnetic impurities in an antiferromagnetic metal. We expect
that new experimental results in nanodevices will confirm some
of the theoretical predictions obtained here.
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